Formal chromium-chromium triple bonds and bent rings in the binuclear cycloheptatrienylchromium carbonyls $\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{n}(n=6,5,4,3,2,1,0)$: A density functional theory study

Hongyan Wang ${ }^{\text {a,b,* }}$, Yaoming Xie ${ }^{\text {b }}$, R. Bruce King ${ }^{\text {b,* }}$, Henry F. Schaefer III ${ }^{\text {b }}$
${ }^{\text {a }}$ College of Sciences, Southwest Jiaotong University, Chengdu 610031, PR China
${ }^{\mathrm{b}}$ Department of Chemistry and Center for Computational Chemistry, University of Georgia, Athens, GA 30602, USA

A R T I C L E I N F O

Article history:

Received 15 April 2008

Received in revised form 26 June 2008
Accepted 26 June 2008
Available online 5 July 2008

Keywords:

Chromium
Metal carbonyls
Cycloheptarienyl
Triple bonds
Density functional theory

Abstract

Binuclear cycloheptatrienylchromium carbonyls of the type $\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{n}(n=6,5,4,3,2,1,0)$ have been investigated by density functional theory. Energetically competitive structures with fully bonded heptahapto $\eta^{7}-\mathrm{C}_{7} \mathrm{H}_{7}$ rings are not found for $\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{n}$ structures having two or more carbonyl groups. This result stands in contrast to the related $\left(\mathrm{C}_{n} \mathrm{H}_{n}\right)_{2} \mathrm{M}_{2}(\mathrm{CO})_{n}(\mathrm{M}=\mathrm{Mn}, n=6 ; \mathrm{M}=\mathrm{Fe}, n=5 ; \mathrm{M}=\mathrm{Co}, n=4)$ systems. Most of the predicted $\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{n}$ structures have bent trihapto or pentahapto $\mathrm{C}_{7} \mathrm{H}_{7}$ rings and $\mathrm{Cr} \equiv \mathrm{Cr}$ distances in the range 2.4-2.5 Å suggesting formal triple bonds. In some cases rearrangement of the heptagonal $\mathrm{C}_{7} \mathrm{H}_{7}$ ring to a tridentate cyclopropyldivinyl or tridentate bis(carbene)alkyl ligand is observed. In addition structures with CO insertion into the $\mathrm{C}_{7} \mathrm{H}_{7}-\mathrm{Cr}$ bond are predicted for $\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{n}$ $(n=6,4,2)$. The global minima found for the $\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{n}$ derivatives for $n=6,5$, and 4 are $\left(\eta^{5}\right.$ $\left.\mathrm{C}_{7} \mathrm{H}_{7}\right)(\mathrm{OC})_{2} \mathrm{Cr} \equiv \mathrm{Cr}(\mathrm{CO})_{4}\left(\eta^{1}-\mathrm{C}_{7} \mathrm{H}_{7}\right),\left(\eta^{3}-\mathrm{C}_{7} \mathrm{H}_{7}\right)(\mathrm{OC})_{2} \mathrm{Cr} \equiv \mathrm{Cr}(\mathrm{CO})_{3}\left(\eta^{2,1}-\mathrm{C}_{7} \mathrm{H}_{7}\right)$, and $\left(\eta^{5}-\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{4}$, respectively. The global minima for $\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{n}(n=3,2)$ have rearranged $\mathrm{C}_{7} \mathrm{H}_{7}$ groups. Singlet and triplet structures with heptahapto $\eta^{7}-\mathrm{C}_{7} \mathrm{H}_{7}$ rings are found for the dimetallocenes $\left(\eta^{7}-\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})$ and $\left(\eta^{7}\right.$ $\left.\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}$, with the singlet structures being of much lower energies in both cases.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Cycloheptatrienylmetal carbonyl chemistry dates back to the discovery of the cation $\left[\left(\eta^{7}-\mathrm{C}_{7} \mathrm{H}_{7}\right) \mathrm{Mo}(\mathrm{CO})_{3}\right]^{+}$(Fig. 1) by Dauben and Honnen [1,2] in 1958. This cation is also historically significant in providing the first example of a cycloheptatrienylmetal complex of any type. Subsequent work led to the discovery of the chromium and tungsten analogues $\left[\left(\eta^{7}-\mathrm{C}_{7} \mathrm{H}_{7}\right) \mathrm{M}(\mathrm{CO})_{3}\right]^{+}(\mathrm{M}=\mathrm{Cr}[3]$ and $\mathrm{W}[4])$. Furthermore, the other early examples of cycloheptatrienylmetal complexes (Fig. 1), such as $\left(\eta^{7}-\mathrm{C}_{7} \mathrm{H}_{7}\right) \mathrm{V}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ (Refs. [5,6]) and $\left(\eta^{7}-\mathrm{C}_{7} \mathrm{H}_{7}\right) \mathrm{V}(\mathrm{CO})_{3}$ (Ref. [7]), were also heptahapto derivatives, in which all seven carbon atoms of the $\mathrm{C}_{7} \mathrm{H}_{7}$ ring are within bonding distance of the metal atom.

Shortly after its discovery, the molybdenum derivative $\left[\left(\eta^{7}-\mathrm{C}_{7} \mathrm{H}_{7}\right) \mathrm{Mo}(\mathrm{CO})_{3}\right]^{+}$was found to be a useful source of other cycloheptatrienyl derivatives, particularly through the iodide $\left(\eta^{7}-\mathrm{C}_{7} \mathrm{H}_{7}\right) \mathrm{Mo}(\mathrm{CO})_{2} \mathrm{I}$, which is readily obtained in good yield from the reaction of $\left[\left(\eta^{7}-\mathrm{C}_{7} \mathrm{H}_{7}\right) \mathrm{Mo}(\mathrm{CO})_{3}\right]^{+}$with iodide ion [8]. Exploration of the chemical reactivity of $\left(\eta^{7}-\mathrm{C}_{7} \mathrm{H}_{7}\right) \mathrm{Mo}(\mathrm{CO})_{2}$ I soon uncov-

[^0]ered another feature of cycloheptatrienylmetal chemistry, namely the ability of the cycloheptatrienyl ring to form stable metal complexes in which not all seven carbon atoms of the $\mathrm{C}_{7} \mathrm{H}_{7}$ ring are within bonding distance of the metal atom. The first compound of this type to be discovered was the trihapto 18-electron complex $\left(\eta^{3}-\mathrm{C}_{7} \mathrm{H}_{7}\right) \mathrm{Mo}(\mathrm{CO})_{2}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ (Fig. 2), which was obtained from the reaction of $\left(\eta^{7}-\mathrm{C}_{7} \mathrm{H}_{7}\right) \mathrm{Mo}(\mathrm{CO})_{2} \mathrm{I}$ with sodium cyclopentadienide in preference to the still unknown and presumably unstable 18-electron complex $\left(\eta^{7}-\mathrm{C}_{7} \mathrm{H}_{7}\right) \mathrm{Mo}(\mathrm{CO})_{2}\left(\eta^{1}-\mathrm{C}_{5} \mathrm{H}_{5}\right)[9,10]$. This observation is a critical one since it indicates that a $\mathrm{C}_{7} \mathrm{H}_{7}$ ring is more likely than a $\mathrm{C}_{5} \mathrm{H}_{5}$ ring to bond only partially to a transition metal leaving some uncomplexed carbon atoms. The next $\eta^{3}-\mathrm{C}_{7} \mathrm{H}_{7}$ derivative to be discovered was the cobalt carbonyl derivative [11] (η^{3} $\left.\mathrm{C}_{7} \mathrm{H}_{7}\right) \mathrm{Co}(\mathrm{CO})_{3}$ (Fig. 2), obtained simply from the photolysis of $\mathrm{Co}_{2}(\mathrm{CO})_{8}$ with cycloheptatriene. The ability of both vanadium and cobalt to form stable $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{M}(\mathrm{CO})_{3}$ derivatives (Figs. 1 and 2), but with different hapticities of the $\mathrm{C}_{7} \mathrm{H}_{7}$ rings, indicates the flexibility of such seven-membered rings in adapting their bonding mode to the electronic requirements of the central metal atom.

The analogy between $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})_{2} \mathrm{I}$ and $\left(\eta^{7}-\mathrm{C}_{7} \mathrm{H}_{7}\right) \mathrm{M}(\mathrm{CO})_{2} \mathrm{I}$ ($\mathrm{M}=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W}$) suggests similar analogies between the corresponding binuclear derivatives $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{n}$ and (η^{7} $\left.\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{M}_{2}(\mathrm{CO})_{n}(\mathrm{M}=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W})$. For the iron systems both cis [12] and trans [13-15] isomers of $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{2}(\mu-\mathrm{CO})_{2}$ with

$\left(\eta^{7}-\mathrm{C}_{7} \mathrm{H}_{7}\right) \mathrm{V}(\mathrm{CO})_{3}$

Fig. 1. Some early $\eta^{7}-\mathrm{C}_{7} \mathrm{H}_{7} M$ derivatives.

$\left(\eta^{3}-\mathrm{C}_{7} \mathrm{H}_{7}\right) \mathrm{Co}(\mathrm{CO})_{3}$

Fig. 2. Some early $\eta^{3}-\mathrm{C}_{7} \mathrm{H}_{7} M$ derivatives.
formal $\mathrm{Fe}-\mathrm{Fe}$ single bonds, as well as $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Fe}_{2}(\mu-\mathrm{CO})_{3}$ with a formal $\sigma+\frac{2}{2} \pi \mathrm{Fe}=\mathrm{Fe}$ double bond of triplet spin multiplicity, are stable compounds [16-19], characterized structurally by X-ray diffraction. Furthermore, $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Fe}_{2}(\mu-\mathrm{CO})_{2}$, with a formal $\mathrm{Fe} \equiv \mathrm{Fe}$ triple bond, is a probable intermediate in the pyrolysis of (η^{5} $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{2}(\mu-\mathrm{CO})_{2}$ to give the tetrahedral Fe_{4} cluster [20] $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{4} \mathrm{Fe}_{4}\left(\mu_{3}-\mathrm{CO}\right)_{4}$. However, analogous binuclear $\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{M}_{2}-$ $(\mathrm{CO})_{n}(\mathrm{M}=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W})$ derivatives have never been synthesized, despite the availability for more than 45 years of possible precursors such as $\left(\eta^{7}-\mathrm{C}_{7} \mathrm{H}_{7}\right) \mathrm{M}(\mathrm{CO})_{2}$ I.

This paper reports a density functional theory (DFT) study on the binuclear cycloheptatrienylchromium derivatives $\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2}$ $\mathrm{Cr}_{2}(\mathrm{CO})_{n}(n=6,5,4,3,2,1)$. The objective of this research is to determine whether differences between $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{M}$ and $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{M}$ bonding lead to different types of structures than those found in the formally isoelectronic $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{n}(n=4,3,2,1)$. A wider range of stoichiometries was chosen than in an earlier DFT study [21] of the apparently isoelectronic iron derivatives $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Fe}_{2}-$ $(\mathrm{CO})_{n}(n=4,3,2,1)$ in view of the anticipated much greater possibility of a $\mathrm{C}_{7} \mathrm{H}_{7}$ ring to bond to a metal atom through only a subset of its seven carbon atoms, such as in the trihapto $\eta^{3}-\mathrm{C}_{7} \mathrm{H}_{7}$ derivatives depicted in Fig. 2.

The results from this DFT study turned out to be very striking in that essentially no analogies whatsoever were found between the chemistry of isoelectronic $\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{n}$ and $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{n}$ derivatives. For the $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{n}$ compounds, including those mentioned above, the five-membered ring always uses all five of its carbon atoms for metal-carbon bonding, thereby forming η^{5} $\mathrm{C}_{5} \mathrm{H}_{5}$ derivatives. The iron-iron distance varies according to the formal bond order required to give the iron atoms the favored 18 -electron configuration. However, for the isoelectronic $\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2}-$ $\mathrm{Cr}_{2}(\mathrm{CO})_{n}$ derivatives the $\mathrm{Cr} \equiv \mathrm{Cr}$ distance varies little (from 2.4 to $2.5 \AA$) as the number of carbonyl groups is varied. These predicted $\mathrm{Cr} \equiv \mathrm{Cr}$ distances are approximately what might be expected for a formal chromium-chromium triple bond. The hapticities of the $\mathrm{C}_{7} \mathrm{H}_{7}$ rings range from 1 to 5 as needed to give the chromium atoms reasonable electronic configurations, normally 16 - or 18 -electron configurations for the singlet structures. Only for the monocar-
bonyl $\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})$ and the carbonyl-free dimetallocene-like structure $\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}$ are heptahapto structures found to be the global minima. For all of the other $\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{n}$ systems, the relatively small number of heptahapto structures were all found to be high-energy structures.

2. Theoretical methods

Electron correlation effects were included by employing density functional theory (DFT) methods, which have evolved as a practical and effective computational tool, especially for organometallic compounds [22-29]. Two DFT methods were used in this study. The first functional is the hybrid B3LYP method, which incorporates Becke's three-parameter exchange functional (B3) with the Lee, Yang, and Parr (LYP) correlation functional [30,31]. The second approach is the BP86 method, which marries Becke's 1988 exchange functional (B) with Perdew's 1986 correlation functional (P86) $[32,33]$. It has been noted that the BP86 method may be somewhat more reliable than the B3LYP method for the types of organometallic systems considered in this paper [34-36].

For carbon and oxygen, the double- ζ plus polarization (DZP) basis set used here ($9 \mathrm{~s} 5 \mathrm{p} / 4 \mathrm{~s} 2 \mathrm{p}$) adds one set of pure spherical harmonic d functions with orbital exponents $\alpha_{d}(C)=0.75$ and $\alpha_{d}(O)=0.85$ to the Huzinaga-Dunning standard contracted DZ sets [37,38]. For Cr, in our loosely contracted DZP basis set, the Wachters' primitive set is used, but augmented by two sets of p functions and one set of d functions and contracted following Hood et al., and designated (14s11p6d/10s8p3d) [39,40]. For the binuclear cycloheptatrienylchromium carbonyls $\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{6},\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{5}$, $\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{4},\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{3},\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{2}$, and $\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2^{-}}$ (CO), there are $548,518,488,458,428$, and 398 contracted Gaussian basis functions, respectively. For $\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}$, there are 368 contracted Gaussian basis functions.

The geometries of all of the structures were fully optimized using both the DZP B3LYP and DZP BP86 methods. The harmonic vibrational frequencies were determined at the same levels by evaluating analytically the second derivatives of the energy with respect to the nuclear coordinates. The corresponding infrared intensities are evaluated analytically as well. All of the computations were carried out with the gaussian 94 program [41] in which the fine grid (75302) is the default for evaluating integrals numerically, and the tight (10^{-8} Hartree) designation is the default for the energy convergence.

Symmetry constraints were used in the initial stages of the optimizations in most cases. Subsequent optimization was carried out by following normal modes corresponding to significant imaginary vibrational frequencies. However, low magnitude imaginary vibrational frequencies are suspect because of significant limitations in the numerical integration procedures used in standard DFT computations. Thus imaginary vibrational frequencies with magnitudes less than $50 i \mathrm{~cm}^{-1}$ are considered questionable, and thus were not always pursued in the optimizations [42-44].

3. Results

3.1. Molecular structures

3.1.1. $\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{6}$

Four energetically low-lying structures were found for $\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{6}$ (Fig. 3 and Tables 1 and 2) from the initial geometries $\left(\eta^{7}-\mathrm{C}_{7} \mathrm{H}_{7}\right) \mathrm{Cr}_{2}(\mathrm{CO})_{6}\left(\eta^{3}-\mathrm{C}_{7} \mathrm{H}_{7}\right)$ and $\left(\eta^{5}-\mathrm{C}_{7} \mathrm{H}_{7}\right) \mathrm{Cr}_{2}(\mathrm{CO})_{6}\left(\eta^{5}-\right.$ $\left.\mathrm{C}_{7} \mathrm{H}_{7}\right)$. The global minimum of $\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{6}$ is an unsymmetrical singlet structure $\left(\eta^{5}-\mathrm{C}_{7} \mathrm{H}_{7}\right)(\mathrm{OC})_{2} \mathrm{Cr} \equiv \mathrm{Cr}(\mathrm{CO})_{4}\left(\eta^{1}-\mathrm{C}_{7} \mathrm{H}_{7}\right)$ (Ia-s) with one pentahapto $\mathrm{C}_{7} \mathrm{H}_{7}$ ring and one monohapto $\mathrm{C}_{7} \mathrm{H}_{7}$ ring as indicated by the $\mathrm{Cr}-\mathrm{C}$ distances. The singlet structure $\left(\eta^{3}-\mathrm{C}_{7} \mathrm{H}_{7}\right)(\mathrm{OC})_{3} \mathrm{Cr} \equiv \mathrm{Cr}$

Ic-t

lb-s

Id-t

Fig. 3. The optimized structures of $\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{6}$. All bond distances are in \AA.

Table 1
Bond distances (in \AA), total energies (E in Hartree), and relative energies ($\Delta \mathrm{E}$ in kcal/mol) for the $\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{6}$ structures

	$\underline{\text { Ia-s }\left(C_{1}\right)}$		$\underline{\text { lb-s (} C_{s} \text {) }}$		Ic-t (C_{1})		Id-t (C_{1})	
	B3LYP	BP86	B3LYP	BP86	B3LYP	BP86	B3LYP	BP86
$\mathrm{Cr}-\mathrm{Cr}$	2.460	2.473	2.509	2.519	2.487	2.498	2.483	2.490
-Energy	3306.524490	3306.83566	3306.48084	3306.79891	3306.47287	3306.78558	3306.46065	3306.76936
ΔE	0.0	0.0	27.4	23.1	32.4	31.4	40.1	41.6
Imaginary frequencies	None	None	None	47 i	None	None	None	None
$\left\langle\mathbf{S}^{2}\right\rangle$	0.00	0.00	0.00	0.00	2.03	2.01	2.02	2.01

$(\mathrm{CO})_{3}\left(\eta^{2,1}-\mathrm{C}_{7} \mathrm{H}_{7}\right)$ (Ib-s) with two trihapto $\mathrm{C}_{7} \mathrm{H}_{7}$ rings of different types lies $27.4 \mathrm{kcal} / \mathrm{mol}$ (B3LYP) or $23.1 \mathrm{kcal} / \mathrm{mol}$ (BP86) above the singlet global minimum Ia-s. In structure Ib-s the three carbons of one of the trihapto $\mathrm{C}_{7} \mathrm{H}_{7}$ rings (designated as η^{3}) are adjacent car-
bons whereas the three carbons of the other trihapto rings are non-adjacent carbons (designated as $\eta^{2,1}$). The triplet structures Ic-t and Id-t at the relatively high energies of $32.4 \mathrm{kcal} / \mathrm{mol}$ (B3LYP)/31.4 kcal/mol (BP86) or $40.1 \mathrm{kcal} / \mathrm{mol}$ (B3LYP) $/ 41.6 \mathrm{kcal} /$

Table 2
Chromium-carbon(cycloheptatrienyl) distances (in \AA) for the $\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{6}$ structures

	Ia-s (C_{1})		$\underline{\text { Ib-s }\left(C_{s}\right)}$		Ic-t (C_{1})		Id-t (C_{1})	
	B3LYP	BP86	B3LYP	BP86	B3LYP	BP86	B3LYP	BP86
$\mathrm{C1Cr}$	2.108	2.111	2.248	2.244	3.171	3.204	2.242	2.237
C 2 Cr	2.214	2.211	3.049	3.048	2.129	2.159	3.042	3.039
$\mathrm{C3Cr}$	2.311	2.291	3.011	3.012	2.223	2.154	3.004	3.004
$\mathrm{C4Cr}$	3.061	3.069	2.248	2.244	3.360	3.597	2.258	2.247
$\mathrm{C5Cr}$	2.253	2.237	2.144	2.138	2.213	2.166	2.139	2.132
$\mathrm{C6Cr}$	3.062	3.070	3.049	3.048	3.164	3.191	3.051	3.046
$\mathrm{C7Cr}$	2.126	2.133	3.011	3.012	2.081	2.098	3.008	3.007
C 17 Cr	3.145	3.148	4.006	4.023	2.385	2.384	4.392	4.424
C 18 Cr	3.940	3.929	3.357	3.369	3.375	3.380	3.923	3.859
C19Cr	4.276	4.252	2.265	2.274	4.258	4.266	3.045	2.939
C20Cr	2.164	2.160	4.006	4.023	2.193	2.168	4.386	4.419
C 21 Cr	4.274	4.248	2.099	2.093	4.598	4.592	2.095	2.097
C 22 Cr	3.141	3.142	3.357	3.369	2.796	2.775	3.911	3.848
C 23 Cr	3.935	3.922	2.265	2.274	4.103	4.086	3.034	2.928

mol (BP86), respectively, above the global minimum Ia-s are related to the corresponding singlet structures. However, in the triplet structure Ic-t one of the carbonyl groups on the chromium atom bearing four carbonyl groups (the "bottom" chromium atom in Fig. 3) has inserted into the chromium-carbon bond to give a trihapto $\eta^{3}-\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{CO}$ ligand. The $\mathrm{Cr}-\mathrm{Cr}$ bond distances for the singlet and triplet structures for $\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{6}$ fall in the relatively narrow range $2.460-2.509 \AA$ and are interpreted as formal $\mathrm{Cr} \equiv \mathrm{Cr}$ triple bonds.

3.1.2. $\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{5}$

The singlet and triplet structures IIa-s and IIb-t (Fig. 4 and Tables 3 and 4) are obtained for $\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{5}$ upon optimization of singlet and triplet unbridged starting structures. The optimized singlet structure $\left(\eta^{3}-\mathrm{C}_{7} \mathrm{H}_{7}\right)(\mathrm{OC})_{2} \mathrm{Cr} \equiv \mathrm{Cr}(\mathrm{CO})_{3}\left(\eta^{2,1}-\mathrm{C}_{7} \mathrm{H}_{7}\right)$ (IIa-s) is the global minimum with all real vibrational frequencies. This structure (Fig. 4) can be derived from Ib-s (Fig. 3) by loss of one carbonyl group from the chromium atom bearing the $\eta^{3}-\mathrm{C}_{7} \mathrm{H}_{7}$ ring (the "top" chromium atom in the figures). The $\mathrm{Cr} \equiv \mathrm{Cr}$ bond

Table 3
Bond distances (in \AA), total energies (E in Hartree), and relative energies (ΔE in kcal/ mol) for the $\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{5}$ structures

	IIa-s $\left(C_{1}\right)$			IIb-t $\left(C_{1}\right)$	
	B3LYP	BP86		B3LYP	BP86
Cr-Cr	2.463	2.472		2.508	2.498
-Energy	3193.11429	3193.41936		3193.10044	3193.40575
ΔE	0.0	0.0		8.7	8.5
Imaginary frequencies	None	None		None	None
$\left\langle\mathbf{S}^{2}\right\rangle$	0.00	0.00		2.01	2.00

Table 4
Chromium-carbon(cycloheptatrienyl) distances (in \AA) for the $\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{5}$ structures

	IIa-s $\left(C_{1}\right)$				Ilb-t $\left(C_{1}\right)$		
	B3LYP	BP86		B3LYP	BP86		
C 1 Cr	3.189	3.235	3.245	3.271			
C 2 Cr	2.043	2.046	2.056	2.067			
C 3 Cr	2.048	2.047	1.943	1.953			
C 4 Cr	3.800	3.846	3.910	3.944			
C 5 Cr	2.109	2.125	2.091	2.140			
C 6 Cr	3.759	3.761	3.903	3.924			
C 7 Cr	3.142	3.117	3.246	3.257			
C 17 Cr	2.274	2.266	2.213	2.209			
C 18 Cr	3.064	3.062	3.050	3.050			
C 19 Cr	3.017	3.017	3.016	3.018			
C 20 Cr	2.247	2.242	2.190	2.192			
C 21 Cr	2.135	2.127	2.124	2.118			
C 22 Cr	3.042	3.039	2.971	2.963			
C 23 Cr	3.000	2.998	2.944	2.935			

distance for IIa-s is $2.463 \AA$ (B3LYP) or $2.472 \AA$ (BP86), consistent with the triple bond giving one metal atom (the "bottom" one in Fig. 4) the favored 18 -electron configuration and the other metal atom (the "top" Cr in Fig. 4) only a 16 -electron configuration. The triplet structure IIb-t lying $8.7 \mathrm{kcal} / \mathrm{mol}$ (B3LYP) or $8.5 \mathrm{kcal} / \mathrm{mol}$

Fig. 4. Optimized structures of $\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{5}$. All bond distances are in \AA.
(BP86) is very similar to the singlet structure IIa-s. The $\mathrm{Cr}-\mathrm{Cr}$ bond distance ($2.508 \AA$ by B3LYP or $2.498 \AA$ by BP86) in the triplet structure IIb-t is longer than that for the corresponding singlet structure Ia-s by $0.043 \AA$ (B3LYP) or $0.026 \AA$ (BP86).

3.1.3. $\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{4}$

Four starting structures of $\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{4}$, namely doubly CObridged cis and trans structures as well as unbridged cis and trans structures, were optimized using the B3LYP and BP86 methods. The global minimum of $\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{4}$ was found to be the doubly semibridged singlet structure $\left(\eta^{5}-\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{4}$ (IIIa-s), which has two pentahapto $\mathrm{C}_{7} \mathrm{H}_{7}$ rings and two semibridging carbonyl groups (Fig. 5 and Tables 5 and 6). This structure is closely related to the structure of the cyclopentadienylchromium carbonyl $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{4}$, which has been synthesized and characterized
by X-ray diffraction [45]. The $\mathrm{Cr} \equiv \mathrm{Cr}$ distance of $2.421 \AA$ (B3LYP) or $2.433 \AA$ (BP86) can be interpreted to be the formal triple bond needed to give both chromium atoms the favored 18 -electron configuration. However, this $\mathrm{Cr} \equiv \mathrm{Cr}$ distance in IIIa-s is $\sim 0.2 \AA$ longer than the experimentally determined [45] distance of $2.23 \AA$ for the likewise formal $\mathrm{Cr} \equiv \mathrm{Cr}$ triple bond found in the conventional structure $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{4}$. A second singlet structure of $\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}-$ (CO) ${ }_{4}$, namely IIIc-s at $22.0 \mathrm{kcal} / \mathrm{mol}$ (B3LYP) or $19.9 \mathrm{kcal} / \mathrm{mol}$ (BP86) above IIIa-s, also has two pentahapto $\mathrm{C}_{7} \mathrm{H}_{7}$ rings and may be considered to be a high energy stereoisomer of IIIa-s. The $\mathrm{Cr} \equiv \mathrm{Cr}$ bond distances in IIIc-s of $2.456 \AA$ (B3LYP) or $2.466 \AA$ (BP86) are $\sim 0.03 \AA$ longer than those in IIIa-s, which can be considered to be a minor difference.

The most unusual singlet structure of $\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{4}$ is IIIb-s (Fig. 5 and Tables 5 and 6), which lies $3.2 \mathrm{kcal} / \mathrm{mol}$ (B3LYP) or

Illa-s

IIIc-s

IIIb-s

IIId-t

Fig. 5. Optimized structures of $\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{4}$. All bond distances are in \AA.

Table 5
Bond distances (in \AA), total energies (E in Hartree), and relative energies (ΔE in kcal/mol) for the $\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{4}$ structures

	$\begin{aligned} & \text { cis- }\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{2}(\mu-\mathrm{CO})_{2} \\ & \text { IIIa-s }\left(\mathrm{C}_{1}\right) \\ & \hline \end{aligned}$		$\begin{aligned} & \left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{3}(\mu-\mathrm{CO}) \\ & \text { IIIb-s }\left(\mathrm{C}_{1}\right) \end{aligned}$		$\begin{aligned} & \text { trans- }\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{2}(\mu-\mathrm{CO})_{2} \\ & \text { IIIc-s }\left(C_{1}\right) \end{aligned}$		$\begin{aligned} & \text { trans- }\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{4} \\ & \text { IIId-t }\left(C_{i}\right) \end{aligned}$	
	B3LYP	BP86	B3LYP	BP86	B3LYP	BP86	B3LYP	BP86
$\mathrm{Cr}-\mathrm{Cr}$	2.421	2.433	2.456	2.455	2.456	2.466	2.508	2.495
$\mathrm{Cr}-\mathrm{C}$ (bridge)	1.887/2.772	1.891/2.774	2.004	2.017	1.895/2.867	1.899/2.806	-	-
$\mathrm{Cr}-\mathrm{C}($ terminal $)$	1.914	1.910	1.908	1.903	1.897	1.896	1.913/1.938	1.913/1.928
			1.936	1.922				
			2.069	2.059				
C-O(bridge)	1.187	1.200	1.231	1.240	1.183	1.196	-	-
C-O(terminal)	1.167	1.182	1.169	1.185	1.179	1.193	1.178/1.167	1.193/1.184
			1.166	1.182				
			1.236	1.249				
-Energy	3079.77955	3080.08382	3079.77452	3080.06053	3079.74457	3080.05214	3079.74358	3080.03747
ΔE	0.0	0.0	3.2	14.6	22.0	19.9	22.6	29.1
Imaginary frequencies	None	None	None	None	None	None	$44 i$	$11 i$

Table 6
Chromium-carbon(cycloheptatrienyl) distances (in \AA) for the $\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{4}$ structures

	IIIIa-s (C_{2})		IIIIb-s (C_{s})		IIIc-s (C_{1})		$\underline{\text { IIId-t }\left(C_{i}\right)}$	
	B3LYP	BP86	B3LYP	BP86	B3LYP	BP86	B3LYP	BP86
C 1 Cr	2.118	2.124	2.049	2.054	2.152	2.157	2.023	2.047
C 2 Cr	3.056	3.065	2.180	2.184	3.107	3.119	2.919	2.913
$\mathrm{C3Cr}$	3.056	3.064	2.300	2.282	3.093	3.105	2.942	2.931
$\mathrm{C4Cr}$	2.256	2.239	2.948	2.947	2.196	2.188	2.030	2.043
C 5 Cr	2.098	2.102	2.259	2.247	2.108	2.117	2.108	2.109
$\mathrm{C6Cr}$	2.327	2.306	2.943	2.941	2.326	2.301	2.907	2.921
$\mathrm{C7Cr}$	2.221	2.218	2.052	2.054	2.245	2.228	2.916	2.930
C17Cr	2.098	2.102	1.999	2.006	2.108	2.117	2.108	2.109
C 18 Cr	3.056	3.064	2.003	2.019	2.245	2.228	2.916	2.930
C 19 Cr	3.056	3.065	3.083	3.101	2.326	2.301	2.907	2.921
C20Cr	2.221	2.218	3.096	3.097	3.093	3.105	2.942	2.931
C 21 Cr	2.118	2.124	3.481	3.496	2.196	2.188	2.030	2.043
C22Cr	2.327	2.306	3.509	3.510	3.107	3.119	2.919	2.913
C 23 Cr	2.256	2.239	3.125	3.126	2.152	2.157	2.023	2.047

$14.6 \mathrm{kcal} / \mathrm{mol}$ (BP86) above IIIa-s. The most conspicuous structural feature in IIIb-s is the carbonyl insertion into the $\mathrm{M}-\mathrm{C}_{7} \mathrm{H}_{7}$ bond (the bottom ring of IIIb-s in Fig. 5) to give a trihapto $\eta^{3}-\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{CO}$ group.

The other $\mathrm{C}_{7} \mathrm{H}_{7}$ ring is clearly a pentahapto ring (see distances in Table 6). Each chromium atom in IIIb-s has a terminal carbonyl group. The remaining carbonyl group bridges the chromium-chromium bond. The $\mathrm{Cr} \equiv \mathrm{Cr}$ distance of $2.456 \AA$ (B3LYP) or $2.455 \AA$ (BP86) in IIIb-s is in the typical range found in most of the $\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{n}$ derivatives discussed in this paper and can be interpreted as a formal triple bond.

One triplet structure (Fig. 5 and Tables 5 and 6) was also found for $\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{4}$ within $30 \mathrm{kcal} / \mathrm{mol}$ of the global minimum, namely IIId-t at $22.6 \mathrm{kcal} / \mathrm{mol}$ (B3LYP) or $29.1 \mathrm{kcal} / \mathrm{mol}$ (BP86) above IIIa-s. Structure IIId-t is a trans unbridged structure with two tetrahapto $\eta^{4}-\mathrm{C}_{7} \mathrm{H}_{7}$ rings, which means that the unpaired electrons must lie on the rings, at least formally. The $\mathrm{Cr}=\mathrm{Cr}$ distance of $2.508 \AA$ (B3LYP) or $2.495 \AA$ (BP86) is somewhat longer than that in IIIa-s. This might mean that IIId-t has a formal $\mathrm{Cr}=\mathrm{Cr}$ double bond, which would give both chromium atoms the 16-electron configuration with unpaired electrons on each $\eta^{4}-\mathrm{C}_{7} \mathrm{H}_{7}$ ring leading to the triplet spin state.
3.1.4. $\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{3}$

Initial structures of $\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{3}$ having three, two, or one bridging CO groups were optimized leading to one singlet structure

Fig. 6. Optimized structures of $\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{3}$. All bond distances are in \AA.

Table 7
Bond distances (in \AA), total energies (E in Hartree), and relative energies (ΔE in kcal/mol) for the singlet $\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{3}$ structures

	$\begin{aligned} & \left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{2}(\mu-\mathrm{CO}) \\ & \text { IVa-s }\left(C_{1}\right) \\ & \hline \end{aligned}$		$\begin{aligned} & \left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mu-\mathrm{CO})_{3} \\ & \text { IVb-t }\left(C_{2}\right) \\ & \hline \end{aligned}$		$\begin{aligned} & \left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})(\mu-\mathrm{CO})_{2} \\ & \text { IVc-s }\left(\mathrm{C}_{1}\right) \\ & \hline \end{aligned}$	
	B3LYP	BP86	B3LYP	BP86	B3LYP	BP86
$\mathrm{Cr}-\mathrm{Cr}$	2.482	2.480	2.530	2.502	2.948	2.938
$\mathrm{Cr}-\mathrm{C}$ (bridge)	1.952/2.138	1.936/2.202	2.018	2.014	2.001/1.975	2.008/1.976
$\mathrm{Cr}-\mathrm{C}$ (terminal)	1.902/1.942	1.899/1.928	1.923	1.915	1.908	1.903
$\mathrm{C}-\mathrm{O}$ (bridge)	1.227	1.232	1.225	1.237	1.260	1.269
C-O(terminal)	1.169/1.169	1.183/1.188	10.177	1.193	1.169	1.185
-Energy	2966.43565	2966.71776	2966.38177	2966.66056	2966.36811	2966.65991
ΔE	0.0	0.0	33.8	35.9	42.4	36.3
Imaginary frequencies	None	None	None	None	None	None

Table 8
Chromium-carbon(cycloheptatrienyl) distances (in \AA) for the $\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{3}$ structures

	$\underline{\text { IVa-s }}$		$\underline{\text { IVb-t }}$		$\underline{\text { IVc-s }}$	
	B3LYP	BP86	B3LYP	BP86	B3LYP	BP86
C 1 Cr	2.832	2.837	1.994	2.016	2.063	2.067
C 2 Cr	1.991	1.985	1.992	2.007	2.968	2.973
C 3 Cr	2.008	2.003	2.858	2.863	2.968	2.973
$\mathrm{C4Cr}$	2.899	2.900	2.876	2.878	2.213	2.214
$\mathrm{C5Cr}$	2.884	2.893	2.865	2.866	2.063	2.067
$\mathrm{C6Cr}$	2.063	2.063	2.887	2.880	2.270	2.261
C 7 Cr	2.952	2.960	2.066	2.061	2.214	2.215
C 17 Cr	2.969	2.987	2.066	2.061	2.209	2.197
C 18 Cr	2.065	2.075	2.865	2.867	2.096	2.112
C 19 Cr	2.271	2.248	2.858	2.863	2.187	2.197
C 20 Cr	2.972	2.990	2.887	2.880	2.224	2.221
C 21 Cr	2.320	2.301	1.992	2.007	2.226	2.221
C 22 Cr	2.072	2.086	2.876	2.878	2.114	2.140
C23Cr	2.218	2.226	1.994	2.016	2.148	2.141

(IVa-s) more than $30 \mathrm{kcal} / \mathrm{mol}$ below any other $\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{3}$ structure (Fig. 6 and Tables 7 and 8). The triply bridged structure $\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mu-\mathrm{CO})_{3}$ was found to collapse to the singly bridged structure $\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{2}(\mu-\mathrm{CO})$ (IVa-s).

The obviously favorable $\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{3}$ structure IVa-s (Fig. 6 and Tables 7 and 8) has a number of unusual features. One of its $\mathrm{C}_{7} \mathrm{H}_{7}$ rings (the "lower" one in Fig. 6) has undergone a transannular rearrangement to give a tridentate cyclopropyl divinyl ligand similar to that predicted in previous work [46] to be present in the lowest energy structure of $\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}$. The other $\mathrm{C}_{7} \mathrm{H}_{7}$ ring (the "upper" one in Fig. 6) remains intact and bonds to the chromium atom as a $\eta^{5}-\mathrm{C}_{7} \mathrm{H}_{7}$ pentahapto ligand. Each chromium atom bears a terminal carbonyl group. The remaining carbonyl group bridges the $\mathrm{Cr} \equiv \mathrm{Cr}$ bond, which has the typical $2.482 \AA$ (B3LYP) or $2.480 \AA$ (BP86) distance interpreted to be a formal triple bond.

Two high energy structures were also found for $\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{3}$ (Fig. 6 and Tables 7 and 8). The triplet structure IVb-t, at $33.8 \mathrm{kcal} /$ mol (B3LYP) or $35.9 \mathrm{kcal} / \mathrm{mol}$ (BP86) above IVa-s, has two trihapto $\mathrm{C}_{7} \mathrm{H}_{7}$ ligands, two terminal carbonyl groups, and a carbonyl group bridging the chromium-chromium bond. The trihapto $\mathrm{C}_{7} \mathrm{H}_{7}$ ligands are rather unusual ones, since one of the $\mathrm{C}-\mathrm{C}$ bonds of the $\mathrm{C}_{7} \mathrm{H}_{7}$ ring has been broken, making a bis(carbene)alkyl ligand donating a total of five electrons through three metal-carbon bonds. If the $\mathrm{Cr} \equiv \mathrm{Cr}$ bond distance of $2.530 \AA$ (B3LYP) or $2.502 \AA$ (BP86) is still considered to be within the range of a formal metal-metal triple bond, then each chromium atom has the 17-electron configuration expected for a triplet spin state, since it receives five electrons from

Fig. 7. Optimized structures of $\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{2}$. All bond distances are in \AA.

Table 9
Bond distances (in \AA), total energies (E in Hartree), and relative energies (ΔE in kcal/ mol) for the $\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{2}$ structures

	Va-s (C_{1})		Vb-s (C_{1})	
	B3LYP	BP86	B3LYP	BP86
$\mathrm{Cr}-\mathrm{Cr}$	2.439	2.436	2.463	2.459
$\mathrm{Cr}-\mathrm{C}$ (bridge)	2.0222 .016	2.0042 .023	1.9761 .864	1.9991 .876
$\mathrm{Cr}-\mathrm{C}($ terminal $)$	1.933	1.906	1.897	1.873
$\mathrm{C}-\mathrm{O}$ (bridge)	1.233	1.248	1.356	1.358
$\mathrm{C}-\mathrm{O}($ terminal $)$	1.165	1.186	1.192	1.201
-Energy	2853.07782	2853.34199	2853.06412	2853.32487
ΔE	0.0	0.0	8.6	10.7
Imaginary frequencies	None	None	None	None
$\left\langle\mathbf{S}^{2}\right\rangle$	0.00	0.00	0.00	0.00

Table 10
Chromium-carbon (in cycloheptatrienyl rings) distances (in \AA) for the $\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{2}$ structures

	Va-s $\left(C_{i}\right)$			Vb-s $\left(C_{1}\right)$	
	B3LYP	BP86		B3LYP	BP86
C 1 Cr	2.807	2.820	2.897	2.900	
C 2 Cr	1.985	1.985	2.832	2.839	
C 3 Cr	1.991	1.991	1.989	1.986	
C 4 Cr	2.864	2.873	2.048	2.049	
C 5 Cr	2.837	2.851	1.992	1.990	
C 6 Cr	2.031	2.032	2.927	2.936	
C 7 Cr	2.896	2.908	2.857	2.869	
C 17 Cr	2.049	2.071	2.889	2.904	
C 18 Cr	2.033	2.166	2.050	2.053	
C 19 Cr	2.728	2.352	2.253	2.210	
C 20 Cr	2.946	2.983	3.404	3.420	
C 21 Cr	2.730	2.336	2.227	2.184	
C 22 Cr	2.944	2.976	3.099	3.110	
C 23 Cr	2.057	2.062	2.036	2.038	

the $\mathrm{C}_{7} \mathrm{H}_{7}$ ligand, two electrons from the terminal carbonyl group, one electron from the shared bridging carbonyl group, and three electrons from the formal $\mathrm{Cr} \equiv \mathrm{Cr}$ triple bond.

The high energy singlet structure IVc-s at $42.4 \mathrm{kcal} / \mathrm{mol}$ (B3LYP) or $36.3 \mathrm{kcal} / \mathrm{mol}$ (BP86) above IVa-s (Fig. 6 and Table 7) is the structure with the largest number of carbonyl groups found in this research having a heptahapto $\eta^{7}-\mathrm{C}_{7} \mathrm{H}_{7}$ ring using all of its carbon atoms to bond to one of the metal atoms. The other $\mathrm{C}_{7} \mathrm{H}_{7}$ ring is a pentahapto $\eta^{5}-\mathrm{C}_{7} \mathrm{H}_{7}$ ring. The $\mathrm{Cr}-\mathrm{Cr}$ distance of $2.948 \AA$ (B3LYP) or $2.938 \AA$ (BP86) in IVc-s is the longest such distance found in this work and may be considered to correspond to a for-

Table 11
Bond distances (in \AA), total energies (E in Hartree), and relative energies (ΔE in kcal/ mol) for the singlet $\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})$ structures

	$\begin{aligned} & \left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mu-\mathrm{CO}) \\ & \text { VIa-s }\left(C_{2 v}\right) \end{aligned}$		$\begin{aligned} & \left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mu-\mathrm{CO}) \\ & \text { VIb-t }\left(C_{s}\right) \end{aligned}$	
	B3LYP	BP86	B3LYP	BP86
$\mathrm{Cr}-\mathrm{Cr}$	2.403	2.408	2.363	2.356
$\mathrm{Cr}-\mathrm{C}$ (bridge)	1.995	2.004	1.967	1.992
$\mathrm{C}-\mathrm{O}$ (bridge)	1.240	1.248	1.243	1.244
-Energy	2739.59020	2739.87181	2739.52274	2739.81122
ΔE	0.0	0.0	42.3	38.0
Imaginary frequencies	None	None	None	$14 i$

Table 12
Chromium-carbon(cycloheptatrienyl) distances (in \AA) for the $\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})$ structures

	VIa-s $\left(C_{2 v}\right)$			VIb-t $\left(C_{s}\right)$	
	B3LYP	BP86			
B3LYP	BP86				
C 1 Cr	2.205	2.194	2.205	2.183	
C 2 Cr	2.186	2.136	2.121	2.162	
C 4 Cr	2.123	2.224	2.189	2.166	
C 5 Cr	2.186	2.205	2.211	2.185	
C 6 Cr	2.231	2.224	2.240	2.210	
C 7 Cr	2.123	2.194	2.150	2.171	
C 17 Cr	2.231	2.136	2.144	2.153	
C 18 Cr	2.205	2.194	2.205	2.183	
C 19 Cr	2.186	2.136	2.121	2.162	
C 20 Cr	2.123	2.224	2.189	2.166	
C 21 Cr	2.186	2.205	2.211	2.185	
C 22 Cr	2.231	2.224	2.240	2.210	
C 23 Cr	2.123	2.194	2.150	2.171	

mal single bond. This gives each chromium atom in IVc-s a 16electron configuration. The interpretation of a $\mathrm{Cr}-\mathrm{Cr}$ distance of $\sim 2.9 \AA$ as a formal single bond supports our interpretation of $\mathrm{Cr} \equiv \mathrm{Cr}$ distances in the range $2.4-2.5 \AA$ (found throughout this work) as formal triple bonds.

3.1.5. $\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{2}$

Six starting structures were optimized for $\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{2}$, including doubly bridged structures as well as trans- and cis-unbridged structures of both singlet and triplet spin multiplicities. This led to only two singlet structures, namely Va-s and Vb-s (Fig. 7 and Tables 9 and 10) within $70 \mathrm{kcal} / \mathrm{mol}$ of the global minimum.

Fig. 8. Optimized geometries for the $\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})$ structures. All bond distances are in \AA.

Fig. 9. Optimized geometries for the $\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}$ structures. All bond distances are in \AA.

Table 13
Bond distances (in \AA), total energies (E in Hartree), and relative energies (ΔE in kcal/ $\mathrm{mol})$ for the singlet $\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}$ structures

| | VIIa-s $\left(C_{2 v}\right)$ | | | VIIb-t $\left(C_{2 v}\right)$ | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | B3LYP | BP86 | | B3LYP | BP86 |
| $\mathrm{Cr}-\mathrm{Cr}$ | 2.255 | 2.265 | | 2.400 | 2.398 |
| $\mathrm{Cr}-\mathrm{C}_{7} \mathrm{H}_{7}$ | 2.163 | 2.166 | | 2.200 | 2.200 |
| -Energy | 2626.14608 | 2626.41287 | | 2626.08937 | 2626.36345 |
| ΔE | 0.0 | 0.0 | | 35.6 | 31.0 |
| Imaginary frequencies | None | None | | None | None |

Table 14
Chromium-carbon(in cycloheptatrienyl rings) distances (in \AA) for the $\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}$ structures

	VIIa-s $\left(C_{2 v}\right)$			VIIb-t $\left(C_{2 v}\right)$	
	B3LYP	BP86			
C 1 Cr	2.162	2.164	2.223	2.217	
C 2 Cr	2.162	2.165	2.167	2.172	
C 3 Cr	2.163	2.166	2.215	2.218	
C 4 Cr	2.162	2.165	2.223	2.217	
C 5 Cr	2.163	2.166	2.189	2.187	
C 6 Cr	2.163	2.166	2.215	2.218	
C 7 Cr	2.163	2.166	2.167	2.172	
C 17 Cr	2.162	2.164	2.223	2.217	
C 18 Cr	2.162	2.165	2.167	2.172	
C 19 Cr	2.163	2.166	2.215	2.218	
C 20 Cr	2.162	2.165	2.223	2.217	
C 21 Cr	2.163	2.166	2.189	2.187	
C 22 Cr	2.163	2.166	2.167	2.172	
C 23 Cr	2.163	2.166	2.215	2.218	

In the global minimum $\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{2}$ structure Va-s one of the $\mathrm{C}_{7} \mathrm{H}_{7}$ rings (the "lower" one in Fig. 7) has rearranged to a tridentate cyclopropyldivinyl ligand similar to that found in IVa-s. The other $\mathrm{C}_{7} \mathrm{H}_{7}$ ring remains intact as a 1,2,5-trihapto $\eta^{2,1}-\mathrm{C}_{7} \mathrm{H}_{7}$ ligand with two separated uncomplexed $\mathrm{C}=\mathrm{C}$ double bonds.

The second singlet structure of $\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{2}$, namely $\mathbf{V b}$-s at $8.6 \mathrm{kcal} / \mathrm{mol}$ (B3LYP) or $10.7 \mathrm{kcal} / \mathrm{mol}$ (BP86) above Va-s, also has a tridentate cyclopropyldivinyl ligand (the "bottom" ring in Fig. 7). In addition, the carbonyl group bridging the two chromium atoms in

НОМО/НОМО-1

HOMO-6

НОМО-2/НОМО-3

HOMO-7/HOMO-8

HOMO-4/HOMO-5

HOMO-9/HOMO-10

Fig. 10. The 11 highest lying filled orbitals in $\left(\eta^{7}-\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}$.

Table 15
Energies ($\mathrm{kcal} / \mathrm{mol}$) for carbonyl dissociation and disproportionation of $\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{n}$ derivatives

	B3LYP	BP86
$\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{6}$ (la-s) $\rightarrow\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{5}$ (IIa-s) +CO	47.3	52.3
$\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{5}$ (IIa-s) $\rightarrow\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{4}$ (IIIa-s) +CO	-0.1	1.6
$\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{4}$ (IIIa-s) $\rightarrow\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{3}$ (IVa-s) +CO	5.7	20.8
$\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{3}($ IVa-s $) \rightarrow\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{2}($ Va-s) +CO	14.4	26.9
$\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{2}\left(\right.$ Va-s) $\rightarrow\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})($ VIa-s) +CO	95.9	86.2
$\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})$ (VIa-s) $\rightarrow\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}$ (VIIa-s) +CO	68.5	79.0
$\begin{aligned} & 2\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{5}(\text { III-s }) \rightarrow\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{6} \text { (Ia- } \\ & \mathbf{s})+\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{4}(\text { IIIIa-s }) \end{aligned}$	-47.3	-50.7
$\begin{aligned} & 2\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{4}(\text { IIIa-s }) \rightarrow\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{5} \text { (IIa- } \\ & \mathbf{s})+\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{3}(\text { IVa-s }) \end{aligned}$	5.8	19.2
$\begin{aligned} & 2\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{3}(\text { IVa-s }) \rightarrow\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{4} \text { (IIIa- } \\ & \mathbf{s})+\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{2}(\text { Va-s }) \end{aligned}$	8.7	6.1
$\begin{aligned} & 2\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{2}(\text { Va-s }) \rightarrow\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{3}(\text { IVa- } \\ & \mathbf{s})+\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})(\text { VIa-s }) \end{aligned}$	81.5	59.3
$\begin{aligned} & 2\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})(\text { VIa-s }) \rightarrow\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{2}(\text { Va-s })+\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2} \\ & \quad(\text { VIIa-s }) \end{aligned}$	27.4	7.1

Vb-s has inserted into the metal-ring bond to the other $\mathrm{C}_{7} \mathrm{H}_{7}$ ring to form a bridging $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{OC}$ oxycarbyne ligand, which functions
formally as a five-electron donor to the "top" chromium atom and a two-electron donor to the "bottom" chromium atom. In both Va\mathbf{s} and $\mathbf{V b}$-s the $\mathrm{Cr} \equiv \mathrm{Cr}$ distances fall in the typical 2.43-2.47 \AA range found in this chemistry, and are tentatively assigned as formal triple bonds.

3.1.6. $\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})$

Optimizations have been carried out on singlet and triplet $\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})$ structures in which the single CO group is either bridging or terminal. The structures of $\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})$ with terminal carbonyl groups are not stationary points but collapse to the bridged stable isomers VIa-s and VIb-t (Fig. 8 and Tables 11 and 12) upon optimization, for both the singlet and triplet spin states. The predicted global minimum for $\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})$ is the singlet $\mathrm{C}_{2 v}$ structure VIa-s, which was found to have a small imaginary vibrational frequency of $13 i \mathrm{~cm}^{-1}$ (B3LYP) or $14 i \mathrm{~cm}^{-1}$ (BP86). The corresponding very similar triplet structure VIb-t is much higher in energy lying $42.3 \mathrm{kcal} / \mathrm{mol}$ (B3LYP) or $38.0 \mathrm{kcal} / \mathrm{mol}$ (BP86) above IVa-s. $\mathrm{The} \mathrm{Cr} \equiv \mathrm{Cr}$ distances in both VIa-s and VIb-t fall in the range $2.36-2.41 \AA$ consistent with formal triple bonds giving the metal atoms 17-electron configurations.

3.1.7. $\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}$

$\operatorname{Bis}(h e p t a h a p t o)$ dimetallocene-type structures are found for both singlet and triplet $\left(\eta^{7}-\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}$ (Fig. 9 and Tables 13 and 14). The $\mathrm{C}-\mathrm{C}$ bond lengths in the $\mathrm{C}_{7} \mathrm{H}_{7}$ rings are $1.438 \AA$ (B3LYP) or $1.447 \AA$ (BP86) for the singlet structure VIIa-s having $D_{7 h}$ symmetry within $0.001 \AA$ (Table 14) and parallel $\mathrm{C}_{7} \mathrm{H}_{7}$ rings. The bent C_{s} triplet structure $\left(\eta^{7}-\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}$ (VIIb-t) is of considerably higher energy at $35.6 \mathrm{kcal} / \mathrm{mol}$ (B3LYP) or $31.0 \mathrm{kcal} / \mathrm{mol}$ (BP86) above VIIa-s.

The $\mathrm{Cr} \equiv \mathrm{Cr}$ distance in VIIa-s at $2.255 \AA$ (B3LYP) or $2.265 \AA$ (BP86) is consistent with the triple bond required to give the Cr atoms 16 -electron configurations. This interpretation of the chro-mium-chromium bonding in VIIa-s is supported by an analysis of its frontier bonding molecular orbitals (Fig. 10). Because of the sevenfold symmetry of the dimetallocene $\left(\eta^{7}-\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}$, all except one of the highest lying 11 bonding MOs appear as degenerate pairs, of which only one member of each degenerate pair is shown in Fig. 10. The bonding MOs for the $\mathrm{Cr} \equiv \mathrm{Cr}$ triple bond in VIIa-s are seen to be the non-degenerate HOMO-6 for the σ bond and the degenerate pair HOMO and HOMO- 1 for the two orthogonal π-bonds. The remaining four degenerate pairs of MOs for $\left(\eta^{7}-\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}$ in Fig. 10 do not correspond to significant metal-metal bonding but instead are mainly localized on the rings. Most significantly, no MOs are seen corresponding to the δ bonding components that would be required for a chromium-chromium quintuple bond.

The significantly shorter $\mathrm{Cr} \equiv \mathrm{Cr}$ triple bond distance in singlet $\left(\eta^{7}-\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}$ than in the singlet metal carbonyls $\left(\eta^{7}-\right.$ $\left.\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{n}$ may relate to the lack of carbonyl groups in (η^{7} $\left.\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}$ to draw electrons from the metal-metal multiple bond through back-bonding. The bonding in singlet $\left(\eta^{7}-\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}$ (VIIa-s) uses eight of the nine orbitals of the $\mathrm{sp}^{3} \mathrm{~d}^{5}$ manifolds of each chromium atom, namely five orbitals for the $\sigma+2 \pi+2 \delta$ fivefold bonding of the chromium atom to the $\eta^{7}-\mathrm{C}_{7} \mathrm{H}_{7}$ ring and three additional orbitals for the $\mathrm{Cr} \equiv \mathrm{Cr}$ triple bond. The nine chromium valence orbitals in the $\mathrm{sp}^{3} \mathrm{~d}^{5}$ valence orbital manifold are not sufficient to form both a fivefold $\sigma+2 \pi+2 \delta$ bond to the $\eta^{7}-\mathrm{C}_{7} \mathrm{H}_{7}$ ring (as a formal 10π-electron $\mathrm{C}_{7} \mathrm{H}_{7}^{3-}$ trianion) and the chromium-chromium quintuple bond necessary to give the chromium atoms the normally favored 18 -electron configuration. In the bent triplet (η^{7} $\left.\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}$ structure VIIb-t the $\mathrm{Cr}=\mathrm{Cr}$ distance is about $0.13 \AA$ A longer than the presumed $\mathrm{Cr} \equiv \mathrm{Cr}$ triple bond in the corresponding singlet structure VIIa-s, consistent with a presumed double bond. The single non-bonding electrons on each chromium atom in triplet VIIb-t are
apparently stereochemically active, leading to a bent rather than parallel arrangement of the $\eta^{7}-\mathrm{C}_{7} \mathrm{H}_{7}$ rings.

3.2. Dissociation energies

Table 15 reports the energies of the following single carbonyl dissociation steps:
$\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{n} \rightarrow\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{n-1}+\mathrm{CO}$
In determining these dissociation energies, the fragments were allowed to relax. The predicted dissociation energy of one CO group from $\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{6}$ (Table 15) is $47.3 \mathrm{kcal} / \mathrm{mol}$ (B3LYP) or $52.3 \mathrm{kcal} / \mathrm{mol}$ (BP86). However further dissociation of a CO group from $\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{5}$ to give $\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{4}$ is almost thermoneutral with a miniscule dissociation energy of $0.1 \mathrm{kcal} / \mathrm{mol}$ (B3LYP) or $1.6 \mathrm{kcal} / \mathrm{mol}$ (BP86). Thus $\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{5}$ appears to be evanescent with respect to extrusion of a carbonyl ligand. The next CO dissociation process, namely $\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{4}$ dissociation to $\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{3}+\mathrm{CO}$, requires $5.7 \mathrm{kcal} / \mathrm{mol}$ (B3LYP) or $20.8 \mathrm{kcal} / \mathrm{mol}$ (BP86). Further dissociation of $\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{2}$ to

Table 16
Metal carbonyl $v(\mathrm{CO})$ frequencies (in cm^{-1}) predicted by the BP86 method for the $\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{n}(n=6,5,4,3,2,1)$ structures

$\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{6}$	
Ia-s (C_{1})	$\begin{aligned} & \text { 1912(a, 195), 1931(a, 245), 1943(a, 468), } \\ & \text { 1958(a, 1357), 1980(a, 1500), 2035(a, 511) } \end{aligned}$
Ib-s (C_{s})	$\begin{aligned} & \text { 1922(a',250), 1936(a' } \left.a^{\prime}, 342\right), 1958\left(a^{\prime}, 448\right), \\ & \text { 2026(a' } \left.a^{\prime}, 925\right), 1917\left(a^{\prime \prime}, 72\right), 1977\left(a^{\prime \prime}, 1619\right) \end{aligned}$
Ic-t (C_{1})	$\begin{aligned} & \text { 1674(a, 249), 1903(a, 186), 1911(a, 384), 1935(a, 941), } \\ & \text { 1940(a, 1066), 1994(a, 1136) } \end{aligned}$
Id-t (C_{1})	$\begin{aligned} & \text { 1881(a,452), 1890(a,252), 1915(a, 390), } \\ & \text { 1953(a, 319), 1972(a, 1513), 2016(a,971) } \end{aligned}$
$\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{5}$	
IIa-s (C_{1})	$\begin{aligned} & \text { 1889(a, 568), 1929(a, 258), 1940(a, 474), } \\ & \text { 1962(a, 242), 2006(a, 774) } \end{aligned}$
IIb-t (C_{1})	$\begin{aligned} & \text { 1888(a, 264), 1927(a, 20), 1945(a, 1475), } \\ & \text { 1953(a, 1428), 1993(a, 216) } \end{aligned}$
$\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{4}$	
IIIIa-s (C_{1})	1932(a, 21), 2071(a, 1670), 1927(b, 1527), 2019(b, 452)
IIIIb-s (C_{1})	1617(a, 212), 1623(a, 62), 1950(a, 1601), 1968(a, 24)
IIIIC-s (C_{1})	1885($\mathrm{a}_{\mathrm{g}}, 0$), 1941($\mathrm{a}_{\mathrm{g}}, 0$), 1888($\mathrm{a}_{\mathrm{u}}, 1364$), 1911 ($\mathrm{a}_{\mathrm{u}}, 1337$)
IIIId-t (C_{i})	1879(ag, 0), 1961($\mathrm{a}_{\mathrm{g}}, 0$), 1883($\mathrm{a}_{\mathrm{u}}, 1251$), 1931($\mathrm{a}_{\mathrm{u}}, 1496$)
$\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{3}$	
IVa-s (C_{1})	1684(a, 459), 1914(a, 519), 1987(a, 1104)
IVb-s (C_{2})	1594(a, 184), 1922(a, 375), 1878(b, 1060)
IVc-s (C_{1})	1542(a, 42), 1625(a, 33), 1961(a, 870)
$\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{2}$	
Va-s (C_{1})	1619(a, 30), 1956(a, 973)
Vb-s (C_{1})	1636(a, 24), 1904(a, 781)
$\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})$	
Vla-s ($\mathrm{C}_{2 v}$)	1603($\mathrm{a}_{1}, 387$)
VIb-t (C_{s})	1547($\mathrm{a}^{\prime}, 224$)

Bridging $v(\mathrm{CO})$ frequencies are given in bold.

Fig. 11. The two types of trihapto $\mathrm{C}_{7} \mathrm{H}_{7}$ rings.

Fig. 12. Some rearrangements of the $\mathrm{C}_{7} \mathrm{H}_{7}$ ligand.
$\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})+\mathrm{CO}$, requires the very high energy of $95.9 \mathrm{kcal} / \mathrm{mol}$ (B3LYP) or $86.2 \mathrm{kcal} / \mathrm{mol}$ (BP86). Thus $\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{2}$ appears to be quite resistant to carbonyl dissociation.

The disproportionation reactions $2\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{n} \rightarrow\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2}{ }^{-}$ $\mathrm{Cr}_{2}(\mathrm{CO})_{n+1}+\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{n-1}$ were also investigated (Table 15). The disproportionation of $\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{5}$ to $\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{6}+$ $\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{4}$ is seen to be highly exothermic at $-47.3 \mathrm{kcal} /$ mol (B3LYP) or $-50.7 \mathrm{kcal} / \mathrm{mol}$ (BP86) indicating the at best fleeting nature of this pentacarbonyl. The other $\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{n}$ derivatives ($n=4,3,2,1$) are seen to be energetically favored with respect to disproportionation.

3.3. Infrared spectra

Table 16 summarizes the $v(\mathrm{CO})$ frequencies of the $\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{n}$ derivatives using the BP86 functional, which has been found to be more reliable for $v(\mathrm{CO})$ frequencies than the B3LYP method [47,48]. As expected, the bridging $v(\mathrm{CO})$ frequencies appear $\sim 300 \mathrm{~cm}^{-1}$ below the terminal $v(\mathrm{CO})$ frequencies in similar compounds and thus typically around $1600 \mathrm{~cm}^{-1}$. The $v(\mathrm{CO})$ frequencies of the carbonyl groups inserted into the $\mathrm{C}_{7} \mathrm{H}_{7}-\mathrm{M}$ bonds in structures Ic-t of $\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{6}$, IIIb-s of $\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{4}$, and $\mathbf{V b}$-s of $\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{2}$ also appears in a similar region.

4. Discussion

This study has as its point of departure the isoelectronic series $\left(\eta^{n}-\mathrm{C}_{n} \mathrm{H}_{n}\right)_{2} \mathrm{M}_{2}(\mathrm{CO})_{n}(\mathrm{M}=\mathrm{Co}, n=4$ [49]; $\mathrm{M}=\mathrm{Fe}, n=5$ [21]; $\mathrm{M}=\mathrm{Mn}$, $n=6$), where all of the optimized structures were found to have intact $\eta^{n}-\mathrm{C}_{n} \mathrm{H}_{n}$ rings, which bond to the metal atoms using all of their carbon atoms. The next members of this isoelectronic series are the $\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{n}$ derivatives discussed in this paper. To our surprise, no examples of energetically competitive heptahapto $\eta^{7}-\mathrm{C}_{7} \mathrm{H}_{7}$ structures were found in this work other than the monocarbonyls $\left(\eta^{7}-\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mu-\mathrm{CO})$ (VIa-s and VIb-t in Fig. 8) and the carbonyl-free dimetallocenes $\left(\eta^{7}-\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}$ (VIIa-s and VIIb-t in Fig. 9). Instead bent trihapto and pentahapto $\mathrm{C}_{7} \mathrm{H}_{7}$ rings were frequently found. The bent trihapto $\mathrm{C}_{7} \mathrm{H}_{7}$ rings are of the following two types (Fig. 11):
(1) The 1,2,3-trihapto derivatives $\left(\eta^{3}-\mathrm{C}_{7} \mathrm{H}_{7}\right)$ in which three adjacent carbons of the $\mathrm{C}_{7} \mathrm{H}_{7}$ ring are bonded to the metal atom with an uncomplexed conjugated 1,3 diene unit.
(2) The $1,2,5$-trihapto derivatives (literally $\eta^{2,1}-\mathrm{C}_{7} \mathrm{H}_{7}$) in which an adjacent pair of carbon atoms and an "isolated" carbon atom are bonded to the metal atom leaving two isolated uncomplexed $\mathrm{C}=\mathrm{C}$ double bonds.

Structures with $1,2,3$-trihapto $\eta^{3}-\mathrm{C}_{7} \mathrm{H}_{7}$ rings are known in a number of stable compounds including those depicted in Fig. 2, whereas structures with $1,2,5$-trihapto $\eta^{2,1}-\mathrm{C}_{7} \mathrm{H}_{7}$ rings are apparently not known experimentally. Of interest is structure $\mathbf{I b}-\mathbf{s}$ for $\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{6}$ (Fig. 3) with an example of each type of trihapto $\mathrm{C}_{7} \mathrm{H}_{7}$ ring.

Examples were found in this work where the heptagonal $\mathrm{C}_{7} \mathrm{H}_{7}$ ring rearranges to other types of isomeric $\mathrm{C}_{7} \mathrm{H}_{7}$ ligands. The tridentate cyclopropyldivinyl ligand found in structures IVa-s, Va-s, and Vb-s (Figs. 6 and 7) can be obtained from a hexahapto $\eta^{6}-\mathrm{C}_{7} \mathrm{H}_{7}$ ligand through a norcaradienyl rearrangement (Fig. 12). This process can also lead to the tridentate five-electron donor bis(carbene)alkyl ligand, as found in structure IVb-t (Fig. 6) if the two ole-fin- Cr bonds in the intermediate η^{5}-norcaradienyl structure rearrange to a chelating bis(carbene) unit by rupture of the C-C single bond of the cyclopropane separating the two vinyl groups.

Another interesting feature of the structures found in this work is the near constancy of the chromium-chromium distances in the range 2.4-2.5 Å regardless of the number of carbonyl groups or the nature of the $\mathrm{C}_{7} \mathrm{H}_{7}$ ligand. Interpreting $\mathrm{Cr} \equiv \mathrm{Cr}$ bonds of such length as formal triple bonds leads to reasonable electron counts in most cases. In this connection it is interesting that the first examples of formal metal-metal triple bonds in metal carbonyl chemistry were found in cyclopentadienylmetal carbonyl derivatives of the type $\left(\eta^{5}-\mathrm{R}_{5} \mathrm{C}_{5}\right)_{2} \mathrm{M}_{2}(\mathrm{CO})_{4}(\mathrm{M}=\mathrm{Cr},[45,50,51] \mathrm{Mo}[52,53] ; \mathrm{R}=\mathrm{H}$, Me) having structures similar to the $\left(\eta^{5}-\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{4}$ global minimum IIIa-s (Fig. 5) found for $\left(\mathrm{C}_{7} \mathrm{H}_{7}\right)_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{4}$.

Acknowledgements

We are grateful to the China National Science Foundation (Grant 10774104) and New Century Excellent Talents in Universities as well as the US National Science Foundation (Grant CHE0749868 and CHE-0716718) for support of this work.

Appendix A. Supplementary material

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.jorganchem.2008.06.036.

References

[1] H.J. Dauben, L.R. Honnen, J. Am. Chem. Soc. 80 (1958) 5570.
[2] G.R. Clark, G. Palenik, J. Organomet. Chem. 50 (1973) 185.
[3] J.D. Munro, P.L. Pauson, J. Chem. Soc. (1960) 3475.
[4] R.B. King, A. Fronzaglia, Inorg. Chem. 11 (1966) 1837.
[5] R.B. King, F.G.A. Stone, J. Am. Chem. Soc. 81 (1959) 5263.
[6] G. Engebretson, R.E. Rundle, J. Am. Chem. Soc. 85 (1963) 481.
[7] R.P.M. Werner, S.A. Manastyrskyj, J. Am. Chem. Soc. 83 (1961) 2023.
[8] D.J. Bertelli, Ph. D. Thesis, University of Washington, 1961.
[9] R.B. King, M.B. Bisnette, Tetrahedron Lett. (1963) 1137.
[10] R.B. King, M.B. Bisnette, Inorg. Chem. 3 (1964) 785.
[11] J.W. Faller, Inorg. Chem. 8 (1969) 767.
[12] R.F. Bryan, P.T. Greene, M.J. Newlands, D.S. Field, J. Chem. Soc. A (1970) 3068.
[13] O.S. Mills, Acta Cryst. 11 (1958) 620.
[14] R.F. Bryan, P.T. Greene, J. Chem. Soc. A (1970) 3068.
[15] A. Mitschler, B. Rees, M.S. Lehmann, J. Am. Chem. Soc. 100 (1978) 3390.
[16] J.V. Caspar, T.J. Meyer, J. Am. Chem. Soc. 102 (1980) 7794.
[17] R.H. Hooker, K.A. Mahmoud, A.J. Rest, Chem. Commun. (1983) 1022.
[18] A.F. Hepp, J.P. Blaha, C. Lewis, M.S. Wrighton, Organometallics 3 (1984) 174.
[19] J.P. Blaha, B.E. Bursten, J.C. Dewan, R.B. Frankel, C.L. Randolph, B.A. Wilson, M.S. Wrighton, J. Am. Chem. Soc. 107 (1985) 4561.
[20] R.B. King, Inorg. Chem. 5 (1966) 2227.
[21] H.Y. Wang, Y. Xie, R.B. King, H.F. Schaefer, Inorg. Chem. 45 (2006) 3384.
[22] A.W. Ehlers, G. Frenking, J. Am. Chem. Soc. 116 (1994) 1514.
[23] B. Delly, M. Wrinn, H.P. Lüthi, J. Chem. Phys. 100 (1994) 5785.
[24] J. Li, G. Schreckenbach, T. Ziegler, J. Am. Chem. Soc. 117 (1995) 486.
[25] V. Jonas, W. Thiel, J. Phys. Chem. 102 (1995) 8474.
[26] T.A. Barckholtz, B.E. Bursten, J. Am. Chem. Soc. 120 (1998) 1926.
[27] S. Niu, M.B. Hall, Chem. Rev. 100 (2000) 353.
[28] P. Macchi, A. Sironi, Coord. Chem. Rev. 238 (2003) 383.
[29] J.-L. Carreon, J.N. Harvey, Phys. Chem. Chem. Phys. 8 (2006) 93.
[30] A.D. Becke, J. Chem. Phys. 98 (1993) 5648.
[31] C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37 (1988) 785.
[32] A.D. Becke, Phys. Rev. A 38 (1988) 3098.
[33] J.P. Perdew, Phys. Rev. B 33 (1986) 8822.
[34] See especially F. Furche, J.P. Perdew, J. Chem. Phys. 124 (2006) 044103.
[35] H.Y. Wang, Y. Xie, R.B. King, H.F. Schaefer, J. Am. Chem. Soc. 127 (2005) 11646.
[36] H.Y. Wang, Y. Xie, R.B. King, H.F. Schaefer, J. Am. Chem. Soc. 128 (2006) 11376.
[37] T.H. Dunning, J. Chem. Phys. 53 (1970) 2823.
[38] S. Huzinaga, J. Chem. Phys. 42 (1965) 1293.
[39] A.J.H. Wachters, J. Chem. Phys. 52 (1970) 1033.
[40] D.M. Hood, R.M. Pitzer, H.F. Schaefer, J. Chem. Phys. 71 (1979) 705.
[41] M.J. Frisch et al., gaussian 94, Revision B.3, Gaussian Inc., Pittsburgh, PA, 1995.
[42] H. Jacobsen, T. Ziegler, J. Am. Chem. Soc. 118 (1996) 4631.
[43] J.M.L. Martin, C.W. Bauschlicher, A. Ricca, Comput. Phys. Commun. 133 (2001) 189.
[44] B.N. Papas, H.F. Schaefer, J. Mol. Struct. 768 (2006) 175.
[45] M.D. Curtis, W.M. Butler, J. Organomet. Chem. 155 (1978) 131.
[46] H. Wang, Y. Xie, R.B. King, H.F. Schaefer III, Eur. J. Inorg. Chem. (2008) 0000.
[47] V. Jonas, W. Thiel, J. Phys. Chem. 102 (1995) 8474.
[48] I. Silaghi-Dumitrescu, T.E. Bitterwolf, R.B. King, J. Am. Chem. Soc. 128 (2006) 5342.
[49] H. Wang, Y. Xie, R.B. King, H.F. Schaefer, Organometallics 26 (2007) 1393.
[50] R.B. King, A. Efraty, W.M. Douglas, J. Organomet. Chem. 60 (1973) 125.
[51] J. Potenza, P. Giordano, D. Mastropaolo, A. Efraty, Inorg. Chem. 13 (1974) 2540.
[52] R.B. King, M.B. Bisnette, J. Organomet. Chem. 8 (1967) 287.
[53] J.S. Huang, L.F. Dahl, J. Organomet. Chem. 243 (1983) 57.

[^0]: * Corresponding authors. Address: Department of Chemistry and Center for Computational Chemistry, University of Georgia, Athens, GA 30602, USA.

 E-mail addresses: wanghyxx@yahoo.com (H. Wang), rbking@chem.uga.edu (R.B. King).

